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Abstract
We have analytically obtained all the density matrix elements up to six lattice
sites for the spin-1/2 Heisenberg XXZ chain at � = 1/2. We use the multiple
integral formula of the correlation function for the massless XXZ chain derived
by Jimbo and Miwa. As for the spin–spin correlation functions, we have
newly obtained the fourth- and fifth-neighbour transverse correlation functions.
We have calculated all the eigenvalues of the density matrix and analyse the
eigenvalue distribution. Using these results the exact values of the entanglement
entropy for the reduced density matrix up to six lattice sites have been obtained.
We observe that our exact results agree quite well with the asymptotic formula
predicted by the conformal field theory.

PACS numbers: 03.65.Ud, 75.10.Pq, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The spin-1/2 antiferromagnetic Heisenberg XXZ chain is one of the most fundamental models
for one-dimensional quantum magnetism, which is given by the Hamiltonian

H =
∞∑

j=−∞

(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
jS

z
j+1

)
, (1.1)

where Sα
j = σα

j

/
2 with σα

j being the Pauli matrices acting on the j th site and � is the
anisotropy parameter. For � > 1, it is called the massive XXZ model where the system is
gapful. Meanwhile for −1 < � � 1 case, the system is gapless and called the massless XXZ
model. Especially we call it XXX model for the isotropic case � = 1.

The exact eigenvalues and eigenvectors of this model can be obtained by the Bethe ansatz
method [1, 2]. Many physical quantities in the thermodynamic limit such as specific heat,
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magnetic susceptibility, elementary excitations, etc. . . , can be exactly evaluated even at finite
temperature by the Bethe ansatz method [2].

The exact calculation of the correlation functions, however, is still a difficult problem.
The exceptional case is � = 0, where the system reduces to a lattice free-fermion model by the
Jordan–Wigner transformation. In this case, we can calculate arbitrary correlation functions
by means of Wick’s theorem [3, 4]. Recently, however, there have been rapid developments
in the exact evaluations of correlation functions for � �= 0 case also, since the Kyoto group
(Jimbo, Miki, Miwa, Nakayashiki) derived a multiple integral representation for arbitrary
correlation functions. Using the representation theory of the quantum affine algebra Uq( ˆsl2),
they first derived a multiple integral representation for massive XXZ antiferromagnetic chain
in 1992 [5, 6], which is before long extended to the XXX case [7, 8] and the massless XXZ
case [9]. Later the same integral representations were reproduced by Kitanine et al [10] in the
framework of quantum inverse scattering method. They have also succeeded in generalizing
the integral representations to the XXZ model with an external magnetic field [10]. More
recently the multiple integral formulae were extended to dynamical correlation functions as
well as finite temperature correlation functions [11–14]. In this way it has been established
now the correlation functions for XXZ model are represented by multiple integrals in general.
However, these multiple integrals are difficult to evaluate both numerically and analytically.

For general anisotropy �, it has been shown that the multiple integrals up to four dimension
can be reduced to one-dimensional integrals [15–21]. As a result all the density matrix elements
within four lattice sites have been obtained for general anisotropy [21]. Reducing the multiple
integrals into one dimension, however, involves hard calculation, which makes difficult to
obtain correlation functions on more than four lattice sites. On the other hand, at the isotropic
point � = 1, an algebraic method based on the qKZ equation has been devised [22], and all
the density matrix elements up to six lattice sites have been obtained [23, 24]. Moreover, as
for the spin–spin correlation functions, up to seventh-neighbour correlation function

〈
Sz

1S
z
8

〉
for the XXX chain have been obtained from the generating functional approach [25, 26]. It
is desirable that this algebraic method be generalized to the case with � �= 1. Actually, Boos
et al have derived an exponential formula for the density matrix elements of the XXZ model,
which does not contain multiple integrals [27–31]. It, however, seems still hard to evaluate
the formula for general density matrix elements.

Among the general � �= 0, there is a special point � = 1/2, where some intriguing
properties have been observed. Let us define a correlation function called emptiness formation
probability (EFP) [8] which signifies the probability of finding a ferromagnetic string of
length n:

P(n) ≡
〈

n∏
j=1

(
1

2
+ Sz

j

)〉
. (1.2)

The explicit general formula for P(n) at � = 1/2 was conjectured in [33]

P(n) = 2−n2
n−1∏
k=0

(3k + 1)!

(n + k)!
, (1.3)

which is proportional to the number of alternating sign matrices of size n × n. Later this
conjecture was proved by the explicit evaluation of the multiple integral representing the EFP
[34]. Remarkably, one can also obtain the exact asymptotic behaviour as n → ∞ from this
formula, which is the unique valuable example except for the free fermion point � = 0.
Note also that as for the longitudinal two-point correlation functions at � = 1/2, up to
eighth-neighbour correlation function

〈
Sz

1S
z
9

〉
have been obtained in [32] by use of the multiple
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integral representation for the generating function. Most outstanding is that all the results
are represented by single rational numbers. These results motivated us to calculate other
correlation functions at � = 1/2. Actually, we have obtained all the density matrix elements
up to six lattice sites by the direct evaluation of the multiple integrals. All the results can be
written by single rational numbers as expected. A direct evaluation of the multiple integrals
is possible due to the particularity of the case for � = 1/2 as is explained below.

2. Analytical evaluation of multiple integral

Here we shall describe how we analytically obtain the density matrix elements at � = 1/2
from the multiple integral formula. Any correlation function can be expressed as a sum of

density matrix elements P
ε′

1,...,ε
′
n

ε1,...,εn
, which are defined by the ground state expectation value of

the product of elementary matrices:

P
ε′

1,...,ε
′
n

ε1,...,εn
≡ 〈

E
ε′

1ε1

1 · · ·Eε′
nεn

n

〉
, (2.1)

where E
ε′
j εj

j are 2 × 2 elementary matrices acting on the j th site as

E++
j =

(
1 0
0 0

)
[j ]

= 1

2
+ Sz

j , E−−
j =

(
0 0
0 1

)
[j ]

= 1

2
− Sz

j ,

E+−
j =

(
0 1
0 0

)
[j ]

= S+
j = Sx

j + iSy

j , E−+
j =

(
0 0
1 0

)
[j ]

= S−
j = Sx

j − iSy

j .

The multiple integral formula of the density matrix element for the massless XXZ chain reads
[9]

P
ε′

1,...,ε
′
n

ε1,...,εn
= (−ν)−n(n−1)/2

∫ ∞

−∞

dx1

2π
· · ·

∫ ∞

−∞

dxn

2π

∏
a>b

sinh(xa − xb)

sinh[(xa − xb − ifabπ)ν]

×
n∏

k=1

sinhyk−1[(xk + iπ/2)ν] sinhn−yk [(xk − iπ/2)ν]

coshn xk

, (2.2)

where the parameter ν is related to the anisotropy as � = cos πν and fab and yk are determined
as

fab = (1 + sign[(s ′ − a + 1/2)(s ′ − b + 1/2)])/2,

y1 > y2 > · · · > ys ′ , ε′
yi

= +

ys ′+1 > · · · > yn, εn+1−yi
= −.

(2.3)

In the case of � = 1/2, namely ν = 1/3, the significant simplification occurs in the multiple
integrals due to the trigonometric identity

sinh(xa − xb) = 4 sinh[(xa − xb)/3] sinh[(xa − xb + iπ)/3] sinh[(xa − xb − iπ)/3]. (2.4)

Actually, if we note that the parameter fab takes the value 0 or 1, the first factor in the multiple
integral at ν = 1/3 can be decomposed as

sinh(xa − xb)

sinh[(xa − xb − iπ)/3]
= 4 sinh

(
xa − xb

3

)
sinh

(
xa − xb + iπ

3

)

= −1 + ω e
2
3 (xa−xb) + ω−1 e− 2

3 (xa−xb), (2.5)

sinh(xa − xb)

sinh[(xa − xb)/3]
= 4 sinh

(
xa − xb + iπ

3

)
sinh

(
xa − xb − iπ

3

)

= 1 + e
2
3 (xa−xb) + e− 2

3 (xa−xb), (2.6)
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where ω = eiπ/3. Expanding the trigonometric functions in the second factor into exponentials

sinhy−1[(x + iπ/2)/3] sinhn−y[(x − iπ/2)/3]

= 21−n(ω1/2 ex/3 − ω−1/2 e−x/3)y−1(ω−1/2 ex/3 − ω1/2 e−x/3)n−y

= 21−n

y−1∑
l=0

n−y∑
m=0

(−1)l+m

(
y − 1

l

) (
n − y

m

)
ωy−l+m−(n+1)/2 e

1
3 (n−2l−2m−1)x, (2.7)

we can explicitly evaluate the multiple integral by use of the formula∫ ∞

−∞

eαx dx

coshn x
= 2n−1B

(
n + α

2
,
n − α

2

)
, Re(n ± α) > 0, (2.8)

where B(p, q) is the beta function defined by

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt, Re(p), Re(q) > 0. (2.9)

Below we shall explicitly describe the procedure for simple cases. The n = 1 case is
rather trivial

P +
+ = P −

− =
∫ ∞

−∞

dx

2π

1

cosh x
= 1

2
. (2.10)

Note that P +
− = P −

+ = 0 due to the condition P
ε′

1,...,ε
′
n

ε1,...,εn
= 0 if

∑n
j=1 εj �= ∑n

j=1 ε′
j .

Next let us calculate P ++
++ as an example. From equation (2.3), we have in this case

s ′ = 2, y1 = 2, y2 = 1, f21 = 1. Substituting these parameters into the integral formula (2.2),
we have

P ++
++ = (−3)

∫ ∞

−∞

dx1

2π

∫ ∞

−∞

dx2

2π

sinh(x2 − x1)

sinh[(x2 − x1 − iπ)/3]

× sinh[(x1 + iπ/2)/3]

cosh2 x1

sinh[(x2 − iπ/2)/3]

cosh2 x2

= (−3)

∫ ∞

−∞

dx1

2π cosh2 x1

∫ ∞

−∞

dx2

2π cosh2 x2

(−1 + ω e
2
3 (x2−x1) + ω−1 e− 2

3 (x2−x1)
)

× 1

4
(ω1/2 ex1/3 − ω−1/2 e−x1/3)(ω−1/2 ex2/3 − ω1/2 e−x2/3)

=
(

−3

4

)
[(−2)(I1/3I1/3 + I1I1) + 2(ω + ω−1)(I1/3I1/3 + I1/3I1)]

= 1

8
, (2.11)

where

Iα =
∫ ∞

−∞

eαx dx

2π cosh2 x
= 1

π
B(1 + α/2, 1 − α/2), for |α| < 2, (2.12)

and we have used the fact that I1/3 = 1/3, I1 = 1/2, ω + ω−1 = 1.
In this way we have succeeded in calculating all the density matrix elements up to six

lattice sites. All the results are represented by single rational numbers, which are presented in
appendix A.

Any spin correlation function can be expressed as a linear combination of density matrix
elements. For example longitudinal and transverse two-point correlation functions can be
written in terms of density matrices as〈
Sz

1S
z
n

〉 = 1

4

∑
ε1,...,εn

ε1εnP
ε1,...,εn

ε1,...,εn
,

〈
Sx

1 Sx
n

〉 = 1

4

∑
ε1,...,εn

P
ε1,ε2,...,εn−1,εn

−ε1,ε2,...,εn−1,−εn
. (2.13)
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Table 1. Comparison with the asymptotic formula of the transverse correlation function〈
Sx

1 Sx
2

〉 〈
Sx

1 Sx
3

〉 〈
Sx

1 Sx
4

〉 〈
Sx

1 Sx
5

〉 〈
Sx

1 Sx
6

〉
Exact −0.156 250 0.080 0781 −0.067 1234 0.052 1997 −0.046 7664
Asymptotics −0.159 522 0.078 7307 −0.066 7821 0.051 9121 −0.046 6083

Especially as for the transverse correlation functions, we have newly obtained the fourth- and
fifth-neighbour correlation functions from our results of density matrix elements on six lattice
sites as〈
Sx

1 Sx
2

〉 = − 5

32
= −0.156 25,

〈
Sx

1 Sx
3

〉 = 41

512
= 0.080 078 125,

〈
Sx

1 Sx
4

〉 = − 4399

65 536
= −0.067 123 413 085 9375,

〈
Sx

1 Sx
5

〉 = 1751 531

33 554 432
= 0.052 199 691 534 042 358 398 4375,

〈
Sx

1 Sx
6

〉 = − 3213 760 345

68 719 476 736
= −0.046 766 368 104 727 007 448 673 248 291 015 625.

The asymptotic formula of the transverse two-point correlation function for the massless XXZ
chain is established in [35, 36]〈
Sx

1 Sx
1+n

〉 ∼ Ax(η)
(−1)n

nη
− Ãx(η)

1

n
η+ 1

η

+ · · · , η = 1 − ν,

Ax(η) = 1

8(1 − η)2

[
	

(
η

2−2η

)
2
√

π	
(

1
2−2η

)
]η

exp

[
−

∫ ∞

0

(
sinh(ηt)

sinh(t) cosh[(1 − η)t]
− η e−2t

)
dt

t

]
,

Ãx(η) = 1

2η(1 − η)

[
	

(
η

2−2η

)
2
√

π	
(

1
2−2η

)
]η+ 1

η

exp

[
−

∫ ∞

0

(
cosh(2ηt) e−2t − 1

2 sinh(ηt) sinh(t) cosh[(1 − η)t]

+
1

sinh(ηt)
− η2 + 1

η
e−2t

)
dt

t

]
, (2.14)

where 	(s) is the Gamma function defined by 	(s) = ∫ ∞
0 t s−1 e−t dt . This asymptotic

formula produces a good numerical value even for small n as is shown in table 1. Note that
the longitudinal correlation function was obtained up to eighth-neighbour correlation

〈
Sz

1S
z
9

〉
from the multiple integral representation for the generating function [32]. Note also that up to
third-neighbour both longitudinal and transverse correlation functions for general anisotropy
� were obtained in [21].

3. Reduced density matrix and entanglement entropy

Below let us discuss the reduced density matrix for a finite sub-chain and its entanglement
entropy. The density matrix for the infinite system at zero temperature has the form

ρT ≡ |GS〉〈GS|, (3.1)

where |GS〉 denotes the ground state of the total system. We consider a finite sub-chain
consisting of sites 1, . . . , n, the rest of which is regarded as an environment. We define the
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Figure 1. Eigenvalue-distribution of density matrices.

Table 2. Entanglement entropy S(n) of a finite sub-chain of length n.

S(1) S(2) S(3) S(4)

1 1.371 640 762 186 8583 1.576 681 078 492 4767 1.717 907 937 271 1414

S(5) S(6)
1.826 281 828 201 2363 1.914 471 471 090 2746

reduced density matrix for this sub-chain by tracing out the environment from the infinite
chain

ρn ≡ ρ1,2,...,n = tr−∞,...,0,n+1,...,∞ρT = [
P

ε′
1,...,ε

′
n

ε1,...,εn

]
εj ,ε

′
j =±, (3.2)

where trn1,n2,... means the trace over the sites n1, n2, . . .. We have numerically evaluated all the
eigenvalues ωα(α = 1, 2, . . . , 2n) of the reduced density matrix ρn up to n = 6. We show the
distribution of the eigenvalues in figure 1. The distribution is less degenerate compared with
the isotropic case � = 1 shown in [24]. In the odd n case, all the eigenvalues are two-fold
degenerate due to the spin-reverse symmetry.

Subsequently, we exactly evaluate the von Neumann entropy (Entanglement entropy)
defined as

S(n) ≡ −trρn log2 ρn = −
2n∑

α=1

ωα log2 ωα. (3.3)

The exact numerical values of S(n) up to n = 6 are shown in table 2. By analysing the
behaviour of the entanglement S(n) for large n, we can see how long quantum correlations
reach [37]. In the massive region � > 1, the entanglement entropy will be saturated as n grows
due to the finite correlation length. This means that the ground state is well approximated by
a subsystem of a finite length corresponding to the large eigenvalues of the reduced density
matrix. On the other hand, in the massless case −1 < � � 1, the conformal field theory
predict that the entanglement entropy shows a logarithmic divergence as n → ∞ [38]

S(n) ∼ 1
3 log2 n + k�, (3.4)

where k� represents a constant term depending on the anisotropy �. Our exact results up to
n = 6 agree quite well with the asymptotic formula as shown in figure 2. We estimate the
numerical value of the constant term k�=1/2 as k�=1/2 ∼ S(6) − 1

3 log2 6 = 1.0528. This
numerical value is slightly smaller than the isotropic case � = 1, where the constant k�=1 is
estimated as k�=1 ∼ 1.0607 from the exact data for S(n) up to n = 6 [24]. At free fermion
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1 2 3 4 5 6

1.0

1.2

1.4

1.6

1.8

2.0

n

S(
n)

Exact
Asymptotics

Figure 2. Entanglement entropy S(n) of a finite sub-chain of length n.

point � = 0, the exact asymptotic formula has been obtained in [39]

S(n) ∼ 1

3
log2 n + k�=0,

k�=0 = 1/3 −
∫ ∞

0
dt

{
e−t

3t
+

1

t sinh2(t/2)
− cosh(t/2)

2 sinh3(t/2)

}/
ln 2.

(3.5)

In this case the numerical value for the constant term is given by k�=0 = 1.047 493 2144 · · ·.

4. Summary and discussion

We have succeeded in obtaining all the density matrix elements on six lattice sites for XXZ
chain at � = 1/2. Especially, we have newly obtained the fourth- and fifth-neighbour
transverse spin–spin correlation functions. Our exact results for the transverse correlations
show good agreement with the asymptotic formula established in [35, 36]. Subsequently we
have calculated all the eigenvalues of the reduced density matrix ρn up to n = 6. From these
results we have exactly evaluated the entanglement entropy, which shows a good agreement
with the asymptotic formula derived via the conformal field theory. Finally, we remark
that similar procedures to evaluate the multiple integrals are also possible at ν = 1/n for
n = 4, 5, 6, . . . , since there are similar trigonometric identities as (2.4). We will report the
calculation of correlation functions for these cases in subsequent papers.
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Appendix. Density matrix elements up to n = 6

In this appendix we present all the independent-density matrix elements defined in
equation (2.1) up to n = 6. Other elements can be computed from the relations

P
ε′

1,...,ε
′
n

ε1,...,εn
= 0 if

n∑
j=1

εj �=
n∑

j=1

ε′
j , (A.1)
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P
ε′

1,...,ε
′
n

ε1,...,εn
= P

ε1,...,εn

ε′
1,...,ε

′
n

= P
−ε′

1,...,−ε′
n−ε1,...,−εn
= P

ε′
n,...,ε

′
1

εn,...,ε1 , (A.2)

P
+,ε′

1,...,ε
′
n

+,ε1,...,εn
+ P

−,ε′
1,...,ε

′
n−,ε1,...,εn
= P

ε′
1,...,ε

′
n,+

ε1,...,εn,+ + P
ε′

1,...,ε
′
n,−

ε1,...,εn,− = P
ε′

1,...,ε
′
n

ε1,...,εn
, (A.3)

and the formula for the EFP [33, 34],

P(n) = P +,...,+
+,...,+ = 2−n2

n−1∏
k=0

(3k + 1)!

(n + k)!
. (A.4)

A.1. n � 4

P −+
+− = − 5

16
= −0.3125, P −++

++− = 41

512
= 0.080 0781,

P −+++
+−++ = − 221

8192
= −0.026 9775, P −+++

++−+ = 1579

65 536
= 0.024 0936,

P −+++
+++− = − 289

32 768
= −0.008 819 58, P +−++

+−++ = 1037

16 384
= 0.063 2935,

P +−++
++−+ = − 2005

32 768
= −0.061 1877, P −−++

+−+− = − 3821

65 536
= −0.058 3038,

P −−++
++−− = 1393

65 536
= 0.021 2555, P −+−+

+−+− = 4883

32 768
= 0.149 017,

P −++−
+−−+ = 3091

32 768
= 0.094 3298.

A.2. n = 5

P −++++
+−+++ = − 14 721

8388 608
= −0.001 754 88, P −++++

++−++ = 37 335

16 777 216
= 0.002 225 34,

P −++++
+++−+ = − 48 987

33 554 432
= −0.001 459 93, P −++++

++++− = 13 911

33 554 432
= 0.000 414 58,

P +−+++
+−+++ = 179 699

33 554 432
= 0.005 355 45, P +−+++

++−++ = − 120 337

16 777 216
= −0.007 172 64,

P +−+++
+++−+ = 165 155

33 554 432
= 0.004 922, P ++−++

++−++ = 168 313

16 777 216
= 0.010 0322,

P −−+++
+−−++ = 31 069

2097 152
= 0.014 8149, P −−+++

+−+−+ = − 411 583

16 777 216
= −0.024 5323,

P −−+++
+−++− = 196 569

16 777 216
= 0.011 7164, P −−+++

++−+− = − 281 271

33 554 432
= −0.008 382 53,

P −−+++
+++−− = 79 673

33 554 432
= 0.002 374 44, P −+−++

+−−++ = − 1441 787

33 554 432
= −0.042 9686,

P −+−++
+−++− = − 1261 655

33 554 432
= −0.037 6002, P −+−++

++−+− = 59 459

2097 152
= 0.0283 523,

P −++−+
+−++− = 1575 515

33 554 432
= 0.046 954, P −+++−

+−−++ = − 696 151

33 554 432
= −0.020 7469,

P −+++−
+−+−+ = 1366 619

33 554 432
= 0.040 7284.
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A.3. n = 6

P −+++++
+−++++ = − 1546 981

34 359 738 368
= −0.000 045 0231, P −+++++

++−+++ = 5095 899

68 719 476 736
= 0.000 074 1551,

P −+++++
+++−++ = − 2366 275

34 359 738 368
= −0.000 068 8677, P −+++++

++++−+ = 2455 833

68 719 476 736
= 0.000 035 7371,

P −+++++
+++++− = − 284 577

34 359 738 368
= −8.282 28 × 10−6, P +−++++

+−++++ = 2927 709

17 179 869 184
= 0.000 170 415,

P +−++++
++−+++ = − 20 086 627

68 719 476 736
= −0.000 292 299, P +−++++

+++−++ = 19 268 565

68 719 476 736
= 0.000 280 395,

P +−++++
++++−+ = − 10 295 153

68 719 476 736
= −0.000 149 814, P ++−+++

++−+++ = 17 781 349

34 359 738 368
= 0.000 517 505,

P ++−+++
+++−++ = − 35 087 523

68 719 476 736
= −0.000 510 591, P −−++++

+−−+++ = 48 421 023

34 359 738 368
= 0.001 409 24,

P −−++++
+−+−++ = − 214 080 091

68 719 476 736
= −0.003 115 28, P −−++++

+−++−+ = 88 171 589

34 359 738 368
= 0.002 566 13,

P −−++++
+−+++− = − 57 522 267

68 719 476 736
= −0.000 837 059, P −−++++

++−−++ = 56 776 545

34 359 738 368
= 0.001 652 41,

P −−++++
++−+−+ = − 154 538 459

68 719 476 736
= −0.002 248 83, P −−++++

++−++− = 60 809 571

68 719 476 736
= 0.000 884 896,

P −−++++
+++−−+ = 6708 473

8589 934 592
= 0.000 780 969, P −−++++

+++−+− = − 33 366 621

68 719 476 736
= −0.000 485 548,

P −−++++
++++−− = 3860 673

34 359 738 368
= 0.000 112 36, P −+−+++

+−−+++ = − 85 706 851

17 179 869 184
= −0.004 9888,

P −+−+++
+−+−++ = 12 211 375

1073 741 824
= 0.011 3727, P −+−+++

+−++−+ = − 332 557 469

34 359 738 368
= −0.009 6787,

P −+−+++
+−+++− = 56 183 761

17 179 869 184
= 0.003 270 33, P −+−+++

++−−++ = − 430 452 959

68 719 476 736
= −0.006 263 91,

P −+−+++
++−+−+ = 606 065 059

68 719 476 736
= 0.008 819 41, P −+−+++

++−++− = − 123 612 511

34 359 738 368
= −0.003 5976,

P −+−+++
+++−−+ = − 108 202 041

34 359 738 368
= −0.003 149 09, P −+−+++

+++−+− = 70 061 315

34 359 738 368
= 0.002 039 05,

P −++−++
+−−+++ = 7860 495

1073 741 824
= 0.007 320 66, P −++−++

+−+−++ = − 591 759 525

34 359 738 368
= −0.017 2225,

P −++−++
+−++−+ = 1044 016 671

68 719 476 736
= 0.015 1924, P −++−++

+−+++− = − 367 905 053

68 719 476 736
= −0.005 353 72,

P −++−++
++−−++ = 676 957 849

68 719 476 736
= 0.009 851 03, P −++−++

++−+−+ = − 988 973 861

68 719 476 736
= −0.014 3915,

P −++−++
++−++− = 6581 795

1073 741 824
= 0.006 129 77, P −++−++

+++−−+ = 363 618 785

68 719 476 736
= 0.005 291 35,

P −+++−+
+−−+++ = − 185 522 333

34 359 738 368
= −0.005 399 41, P −+++−+

+−+−++ = 901 633 567

68 719 476 736
= 0.013 1205,

P −+++−+
+−++−+ = − 103 539 423

8589 934 592
= −0.012 0536, P −+++−+

+−+++− = 38 524 625

8589 934 592
= 0.004 484 86,

P −+++−+
++−−++ = − 267 901 987

34 359 738 368
= −0.007 796 97, P −+++−+

++−+−+ = 12 750 645

1073 741 824
= 0.011 875,

P −+++−+
+++−−+ = − 309 855 965

68 719 476 736
= −0.004 509, P −++++−

+−−+++ = 29 410 257

17 179 869 184
= 0.001 7119,

P −++++−
+−+−++ = − 296 882 461

68 719 476 736
= −0.004 320 21, P −++++−

+−++−+ = 35 985 105

8589 934 592
= 0.004 189 22,
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P −++++−
++−−++ = 92 176 287

34 359 738 368
= 0.002 682 68, P +−−+++

+−−+++ = 202 646 807

34 359 738 368
= 0.005 8978,

P +−−+++
+−+−++ = − 972 245 985

68 719 476 736
= −0.014 148, P +−−+++

+−++−+ = 217 687 057

17 179 869 184
= 0.012 6711,

P +−−+++
++−+−+ = − 211 696 415

17 179 869 184
= −0.012 3224, P +−−+++

+++−−+ = 78 922 695

17 179 869 184
= 0.004 593 91,

P +−+−++
+−+−++ = 1196 499 417

34 359 738 368
= 0.034 8227, P +−+−++

+−++−+ = − 2209 522 727

68 719 476 736
= −0.032 1528,

P +−+−++
++−+−+ = 1108 384 987

34 359 738 368
= 0.032 2582, P +−++−+

+−++−+ = 530 683 585

17 179 869 184
= 0.030 8899,

P +−++−+
++−−++ = 347 202 525

17 179 869 184
= 0.020 2098, P −−−+++

+−−++− = − 268 623 007

68 719 476 736
= −0.003 908 98,

P −−−+++
+−+−+− = 46 285 135

8589 934 592
= 0.005 3883, P −−−+++

+−++−− = − 136 974 885

68 719 476 736
= −0.001 993 25,

P −−−+++
++−+−− = 19 939 391

17 179 869 184
= 0.001 160 63, P −−−+++

+++−−− = − 18 442 085

68 719 476 736
= −0.000 268 368,

P −−+−++
+−−++− = 1018 463 205

68 719 476 736
= 0.014 8206, P −−+−++

+−+−+− = − 1454 513 249

68 719 476 736
= −0.021 166,

P −−+−++
+−++−− = 277 721 503

34 359 738 368
= 0.008 082 76, P −−+−++

++−+−− = − 335 265 249

68 719 476 736
= −0.004 878 75,

P −−++−+
+−−++− = − 369 408 975

17 179 869 184
= −0.021 5024, P −−++−+

+−+−+− = 1104 236 607

34 359 738 368
= 0.032 1375,

P −−++−+
+−++−− = − 880 560 357

68 719 476 736
= −0.012 8138, P −−++−+

++−−+− = − 876 924 641

68 719 476 736
= −0.012 7609,

P −−+++−
+−−−++ = 113 631 201

17 179 869 184
= 0.006 614 21, P −−+++−

+−−+−+ = − 292 857 807

17 179 869 184
= −0.017 0466,

P −−+++−
+−+−−+ = 548 645 951

34 359 738 368
= 0.015 9677, P −−+++−

++−−−+ = − 377 925 345

68 719 476 736
= −0.005 499 54,

P −+−+−+
+−−++− = 1719 255 909

34 359 738 368
= 0.050 0369, P −+−+−+

+−+−+− = − 5350 158 879

68 719 476 736
= −0.077 8551,

P −+−++−
+−−+−+ = 1565 770 597

34 359 738 368
= 0.045 5699, P −+−++−

+−+−−+ = − 3059 753 503

68 719 476 736
= −0.044 5253,

P −++−−+
+−−++− = − 2117 554 719

68 719 476 736
= −0.030 8145.

References

[1] Bethe H A 1931 Z. Phys. 71 205
[2] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University

Press)
[3] Lieb E, Schultz T and Mattis D 1961 Ann. Phys., NY 16 407
[4] McCoy B M 1968 Phys. Rev. 173 531
[5] Jimbo M, Miki K, Miwa T and Nakayashiki A 1992 Phys. Lett. A 168 256
[6] Jimbo M and Miwa T 1994 Algebraic Analysis of Solvable Lattice Models (CBMS Regional Conference Series

in Mathematics vol 85) (Providence, RI: American Mathematical Society)
[7] Nakayashiki A 1994 Int. J. Mod. Phys. A 9 5673
[8] Korepin V E, Izergin A, Essler F H L and Uglov D 1994 Phys. Lett. A 190 182
[9] Jimbo M and Miwa T 1996 J. Phys. A: Math. Gen. 29 2923

[10] Kitanine N, Maillet J M and Terras V 2000 Nucl. Phys. B 567 554
[11] Kitanine N, Maillet J M, Slavnov N A and Terras V 2005 Nucl. Phys. B 729 558
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