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Abstract

We have analytically obtained all the density matrix elements up to six lattice
sites for the spin-1/2 Heisenberg XXZ chain at A = 1/2. We use the multiple
integral formula of the correlation function for the massless XXZ chain derived
by Jimbo and Miwa. As for the spin—spin correlation functions, we have
newly obtained the fourth- and fifth-neighbour transverse correlation functions.
We have calculated all the eigenvalues of the density matrix and analyse the
eigenvalue distribution. Using these results the exact values of the entanglement
entropy for the reduced density matrix up to six lattice sites have been obtained.
We observe that our exact results agree quite well with the asymptotic formula
predicted by the conformal field theory.

PACS numbers: 03.65.Ud, 75.10.Pq, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The spin-1/2 antiferromagnetic Heisenberg XXZ chain is one of the most fundamental models
for one-dimensional quantum magnetism, which is given by the Hamiltonian
M= 3 (]S +S)S) + AS;S), (L1)

j=—00

where §7 = o / 2 with o7 being the Pauli matrices acting on the jth site and A is the
anisotropy parameter. For A > 1, it is called the massive XXZ model where the system is
gapful. Meanwhile for —1 < A < 1 case, the system is gapless and called the massless XXZ
model. Especially we call it XXX model for the isotropic case A = 1.

The exact eigenvalues and eigenvectors of this model can be obtained by the Bethe ansatz
method [1, 2]. Many physical quantities in the thermodynamic limit such as specific heat,
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magnetic susceptibility, elementary excitations, etc. . ., can be exactly evaluated even at finite
temperature by the Bethe ansatz method [2].

The exact calculation of the correlation functions, however, is still a difficult problem.
The exceptional case is A = 0, where the system reduces to a lattice free-fermion model by the
Jordan—Wigner transformation. In this case, we can calculate arbitrary correlation functions
by means of Wick’s theorem [3, 4]. Recently, however, there have been rapid developments
in the exact evaluations of correlation functions for A # 0 case also, since the Kyoto group
(Jimbo, Miki, Miwa, Nakayashiki) derived a multiple integral representation for arbitrary
correlation functions. Using the representation theory of the quantum affine algebra U, (sh),
they first derived a multiple integral representation for massive XXZ antiferromagnetic chain
in 1992 [5, 6], which is before long extended to the XXX case [7, 8] and the massless XXZ
case [9]. Later the same integral representations were reproduced by Kitanine ez al [10] in the
framework of quantum inverse scattering method. They have also succeeded in generalizing
the integral representations to the XXZ model with an external magnetic field [10]. More
recently the multiple integral formulae were extended to dynamical correlation functions as
well as finite temperature correlation functions [11-14]. In this way it has been established
now the correlation functions for XXZ model are represented by multiple integrals in general.
However, these multiple integrals are difficult to evaluate both numerically and analytically.

For general anisotropy A, it has been shown that the multiple integrals up to four dimension
can be reduced to one-dimensional integrals [15-21]. As aresult all the density matrix elements
within four lattice sites have been obtained for general anisotropy [21]. Reducing the multiple
integrals into one dimension, however, involves hard calculation, which makes difficult to
obtain correlation functions on more than four lattice sites. On the other hand, at the isotropic
point A = 1, an algebraic method based on the gKZ equation has been devised [22], and all
the density matrix elements up to six lattice sites have been obtained [23, 24]. Moreover, as
for the spin—spin correlation functions, up to seventh-neighbour correlation function (S} S§)
for the XXX chain have been obtained from the generating functional approach [25, 26]. It
is desirable that this algebraic method be generalized to the case with A # 1. Actually, Boos
et al have derived an exponential formula for the density matrix elements of the XXZ model,
which does not contain multiple integrals [27-31]. It, however, seems still hard to evaluate
the formula for general density matrix elements.

Among the general A # 0, there is a special point A = 1/2, where some intriguing
properties have been observed. Let us define a correlation function called emptiness formation
probability (EFP) [8] which signifies the probability of finding a ferromagnetic string of

length n:
n 1
P(n) = <]‘[ (E + S_§>>. (1.2)

j=1
The explicit general formula for P(n) at A = 1/2 was conjectured in [33]

n—1

Pm)=2""] Gk+ D (1.3)

(! ’

which is proportional to the number of alternating sign matrices of size n x n. Later this
conjecture was proved by the explicit evaluation of the multiple integral representing the EFP
[34]. Remarkably, one can also obtain the exact asymptotic behaviour as n — oo from this
formula, which is the unique valuable example except for the free fermion point A = 0.
Note also that as for the longitudinal two-point correlation functions at A = 1/2, up to
eighth-neighbour correlation function (S; S;) have been obtained in [32] by use of the multiple
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integral representation for the generating function. Most outstanding is that all the results
are represented by single rational numbers. These results motivated us to calculate other
correlation functions at A = 1/2. Actually, we have obtained all the density matrix elements
up to six lattice sites by the direct evaluation of the multiple integrals. All the results can be
written by single rational numbers as expected. A direct evaluation of the multiple integrals
is possible due to the particularity of the case for A = 1/2 as is explained below.

2. Analytical evaluation of multiple integral

Here we shall describe how we analytically obtain the density matrix elements at A = 1/2

from the multiple integral formula. Any correlation function can be expressed as a sum of

density matrix elements P:l‘f,',',',fn", which are defined by the ground state expectation value of

the product of elementary matrices:

P = (B B, @.1)
where E;’ “are2 x 2 elementary matrices acting on the jth site as
1 0 1 0 0 1
= = = Z T = = - — Z
Ej _<0 0)[. =3t Ej (0 1) =27
Jl L1
0 1 : 0 0 .
+— Y o s QY —+ o QY
Ej —<0 O)H—SJ—S}C*‘SJ" E; —<1 0>[']—Sj =8 — iS5,
J J

The multiple integral formula of the density matrix element for the massless XXZ chain reads

(9]

P& = (—y)yTn=D/2 / Ty / > dx : sinh(xq — ’_Cb)
o 2T oo 2T b sinh[(x, — xp — ifapm)V]

n

y 1—[ sinh [ (xg + i /2)v] sinh" ™ [(x — i /2)v]
cosh” xx ’

(2.2)

k=1
where the parameter v is related to the anisotropy as A = cos wv and f,; and y; are determined
as

far = (1 +sign[(s' —a +1/2)(s' —b+1/2)])/2,

Yi> Y>>y, €, =+ (2.3)
Ys'+1 = 2 > Yo, €ntl—y, = —-

In the case of A = 1/2, namely v = 1/3, the significant simplification occurs in the multiple

integrals due to the trigonometric identity

sinh(x, — xp) = 4 sinh[(x, — x5)/3] sinh[(x, — x, +i7)/3] sinh[(x, — x, — i7)/3].  (2.4)

Actually, if we note that the parameter f,, takes the value O or 1, the first factor in the multiple
integral at v = 1/3 can be decomposed as

sinh(x, — xp) _ Asinh Xg — Xp sinh Xg — Xp + 1T
sinh[(x, — x, —im)/3] 3 3
=l +peitem eI 2.5)
sinh(x, — xp) 4sinh Xg — Xp +1\ . h Xg — Xp — 17
—————— =4sinph| ——— |sinh | —
sinh[(x, — x5)/3] 3 3

2 2
= 14ei(a=) 4 g=300) (2.6)
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where @ = ¢/3. Expanding the trigonometric functions in the second factor into exponentials

sinh’ ~'[(x +im/2)/3] sinh" [ (x — im/2)/3]
— 217n(a)1/2 x/3 w71/2 efx/3)y71(w71/2 e)r/3 o (,()1/2 efx/3)n7y

y—=1n—y
—pl-n Z Z( 1)l+m ( ) ( - y> wyfl+m7(n+l)/2e%(n72172m71)x’ 2.7

1=0 m=0
we can explicitly evaluate the multiple integral by use of the formula

e dx . n+o n—ao
=2""B , , Re(n + a) > 0, (2.8)
_oo COSh™ x 2 2

where B(p, g) is the beta function defined by

1
B(p,q) = / P71 =9 dr, Re(p), Re(g) > 0. 2.9)
0
Below we shall explicitly describe the procedure for simple cases. The n = 1 case is
rather trivial
. _ ®dx 1 1
prep = & == (2.10)
o 2m coshx 2

Note that P* = P = 0 due to the condition PG[‘,’......,’G,, =0if Z/ V€ F Z, | j
Next let us calculate P as an example. From equation (2.3), we have in this case
s"=2,y1 =2, y, =1, fo1 = 1. Substituting these parameters into the integral formula (2.2),
we have
pr=cy [ S [ Sa_Smtesx
oo 27 J_oo 27 sinh[(xp — x; —im)/3]
» sinh[(x; + i /2)/3] sinh[(x; — i /2)/3]

COShz x 1 cosh? x,
> dxo 2 (xp— 1 —2(p—
_( 3) (—1+a)e3()‘2 x1)+a) le 5(x Xl))
o 27 cosh2 x1 J_co 277 cosh® x,
(a)l/Z x1/3 _ *1/2 X1/3)(w71/26xz/3 —61)1/2 e7x2/3)

——> [(=2)(Li3li3+ L) + 2@+ Y (Lshys + 131)]

, 2.11)

I
OOI*/—\ X
4;

where

o e®dx 1

Iy = / ———— =—B(l+a/2,1 —a/2), for |a| <2, (2.12)
o 27 cosh” x T

and we have used the fact that I3 =1/3, 1} =1/2, w + ol =1.

In this way we have succeeded in calculating all the density matrix elements up to six
lattice sites. All the results are represented by single rational numbers, which are presented in
appendix A.

Any spin correlation function can be expressed as a linear combination of density matrix
elements. For example longitudinal and transverse two-point correlation functions can be
written in terms of density matrices as
sis)=3 X aapins,  [sisi)= Z P e (2.13)

.....

€lyenny [ Y < (R
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Table 1. Comparison with the asymptotic formula of the transverse correlation function

(sis3)  (sis3) (si3) (si55) [siS5)

Exact —0.156250  0.0800781 —0.0671234  0.0521997 —0.046 7664
Asymptotics —0.159522  0.078 7307 —0.0667821  0.0519121 —0.046 6083

Especially as for the transverse correlation functions, we have newly obtained the fourth- and
fifth-neighbour correlation functions from our results of density matrix elements on six lattice
sites as

(q@:_i:_m%%,

32
41
(S185) = —= =0.080078 125,
512
4399
T87) = ———— = —0.067 12341
(S85) 553 = —0-0671234130859375,
(Sys3)= IS5 052199691 534 042 358 398 4375
11T 33554432 7 ’
3213760345
($788) = ——————— = —0.046 766 368 104 727 007 448 673 248 291 015 625.
68719476736

The asymptotic formula of the transverse two-point correlation function for the massless XXZ
chain is established in [35, 36]

CU A -
P - x(’?)nm_% +-, n=1—-yv,

Ay = ! (5) "ex [_/"0< sinh(nr) - e_2’> g]
S T 8(1 —n)? 2ﬁr(ﬁ) P o \sinh(¢) cosh[(1 — 1)¢] 7 t |’

A — 1 [ I (5%;) )T” oxp [_/00< coshnt)e 2 — 1
0

(STSt) ~ Acn)

1+n

(1 —n) | 27T (25 2 sinh(nt) sinh(z) cosh[(1 — n)t]
2
. 1 o+ 1 e_2t> ﬂ] (2.14)
sinh(nt) n t

where I'(s) is the Gamma function defined by I'(s) = fooo t*~le~'dr. This asymptotic
formula produces a good numerical value even for small # as is shown in table 1. Note that
the longitudinal correlation function was obtained up to eighth-neighbour correlation (Sng)
from the multiple integral representation for the generating function [32]. Note also that up to
third-neighbour both longitudinal and transverse correlation functions for general anisotropy
A were obtained in [21].

3. Reduced density matrix and entanglement entropy
Below let us discuss the reduced density matrix for a finite sub-chain and its entanglement
entropy. The density matrix for the infinite system at zero temperature has the form

pr = |GS)(GS|, (3.1

where |GS) denotes the ground state of the total system. We consider a finite sub-chain
consisting of sites 1, ..., n, the rest of which is regarded as an environment. We define the
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_ (X
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S
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1078
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0 10 20 30 40 50 60 0 10 20 30
o o
Figure 1. Eigenvalue-distribution of density matrices.
Table 2. Entanglement entropy S(n) of a finite sub-chain of length 7.
NEVRENE) S(3) S4)
1 1.371640762 1868583  1.5766810784924767  1.717907937271 1414
N S(6)
1.826281 8282012363 1.914471471 0902746

reduced density matrix for this sub-chain by tracing out the environment from the infinite
chain

€]bennr€py
Pn = P12,.0n = tr—oo.m,O,n+l ..... 0o PT = [Pe|l ..... €n ]e,-,e}::i:’ (32)
where tr,,, ,,. means the trace over the sites n1, na, . ... We have numerically evaluated all the
eigenvalues wy (o = 1, 2, ..., 2") of the reduced density matrix p, up to n = 6. We show the

distribution of the eigenvalues in figure 1. The distribution is less degenerate compared with
the isotropic case A = 1 shown in [24]. In the odd n case, all the eigenvalues are two-fold
degenerate due to the spin-reverse symmetry.
Subsequently, we exactly evaluate the von Neumann entropy (Entanglement entropy)
defined as
on
S(n) = —trp, logy pr = — ) wy log, @y (3.3)
a=1
The exact numerical values of S(n) up to n = 6 are shown in table 2. By analysing the
behaviour of the entanglement S(n) for large n, we can see how long quantum correlations
reach [37]. In the massive region A > 1, the entanglement entropy will be saturated as n grows
due to the finite correlation length. This means that the ground state is well approximated by
a subsystem of a finite length corresponding to the large eigenvalues of the reduced density
matrix. On the other hand, in the massless case —1 < A < 1, the conformal field theory
predict that the entanglement entropy shows a logarithmic divergence as n — oo [38]

S(n) ~ Llogyn +ka, (3.4

where k, represents a constant term depending on the anisotropy A. Our exact results up to
n = 6 agree quite well with the asymptotic formula as shown in figure 2. We estimate the
numerical value of the constant term ka—i/» as ka—i2 ~ S(6) — %log2 6 = 1.0528. This
numerical value is slightly smaller than the isotropic case A = 1, where the constant ka—; is
estimated as ka—; ~ 1.0607 from the exact data for S(n) up to n = 6 [24]. At free fermion
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2.0

1.8
1.6 P

S(n)

14 e Exact °
12 Asymptotics -

1.0 .

Figure 2. Entanglement entropy S(n) of a finite sub-chain of length 7.

point A = 0, the exact asymptotic formula has been obtained in [39]

1
S(Vl) ~ 5 logzn +kA:0,

00 et 1 cosh(z/2)
o e _ In2
kazo=1/3 /0 dt{st * Snn/2) 2sinh3(r/2)}/ !

In this case the numerical value for the constant term is given by ka—o = 1.0474932144 - - ..

(3.5)

4. Summary and discussion

We have succeeded in obtaining all the density matrix elements on six lattice sites for XXZ
chain at A = 1/2. Especially, we have newly obtained the fourth- and fifth-neighbour
transverse spin—spin correlation functions. Our exact results for the transverse correlations
show good agreement with the asymptotic formula established in [35, 36]. Subsequently we
have calculated all the eigenvalues of the reduced density matrix p, up to n = 6. From these
results we have exactly evaluated the entanglement entropy, which shows a good agreement
with the asymptotic formula derived via the conformal field theory. Finally, we remark
that similar procedures to evaluate the multiple integrals are also possible at v = 1/n for
n=4,5,6,..., since there are similar trigonometric identities as (2.4). We will report the
calculation of correlation functions for these cases in subsequent papers.
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Appendix. Density matrix elements up to n = 6

In this appendix we present all the independent-density matrix elements defined in
equation (2.1) up to n = 6. Other elements can be computed from the relations

n n
PELa =0 if Y ej# Y el (A1)
Jj=1 Jj=1
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P = P =PI = PO (A.2)
TR SIS S A S il A-3)
and the formula for the EFP [33, 34],
n—1
e Gk D!
P — pret —on 7 A4
(n) = P75 L[) (n+k)! (A
Al.n<4
5 41
16 512
221 1579
P = -2 = 0.0269775, Ho3 = oo = 0.0240936,
+—+t 8192 Y 65536
289 1037
— = —0.008 81958, Tt — = 10.0632935,
=T 732768 T 16384
2005 3821
o 22 00611877, P = ———- = —0.0583038,
—+ 32768 e 65536
1393 4883
St = (.0212555, PIT = s = 0149017,
" T 65536 * T 32768
3091
e = 0.0943298.
32768
A2.n=5
14721 37335
P = —— = —0.00175488, S = T 2 0.002225 34,
+ T 8388608 o T 16777216
48987 13911
P = —————— =-000145993, P %"= _————— =0.00041458,
et 33554432 T 33554432
179699 120337
P = —— = 0.00535545, P = —— o — —0.00717264,
T T 33554432 T 16777216
165 155 168313
bt = 0.004 922, -~ — =0.0100322,
T T 33554432 T 16777216
31060 411583
p——+— 2% 1014814 P =~ = —0.024532
+——++ 2097 152 0 0 8 9’ ot 16 777 216 0 O 53 3’
196 569 281271
P = 27 00117164 P = — s = 0. 2
= 0B _oon7ies, T =~ asiaay = 000838253,
79673 1441787
P = 2 = 0.00237444, P = —ieeg g, = —0-0429686,
33554432 33554432
1261 655 29459
Pt = —— 22 0.0376002, PLET = 509715, = 010283523,
FHT T 33554432 T 2097152
1575515 696 151
PIH Tt = 2220 0,046954, P = —33ssram, = —0:0207469,
33554432 33554432
1366619
P = ————— =10.0407284.

33554432
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A3.n=6
P = 1546981 0.000 045 0231
R T 34359738368 ’
23662
12:1:T==-—4——§§§422L4—==—410000688677,
34359738 368
284577
port— T T — 828228 x 107°
Hee T T 34350738368 A
2 2
Pl = _ 20086627 —0.000292 299,
68719476736
10295 153
Pl = ———— = —0.000149 814
68719476736
2
P:;j:::—gigggifgig—:-—000051059L
68719476736
214 1
K:ﬁ:=———£@EL7=4mm1wm,
68719476736
57522267
Pt =~ = —0.000837059,
P 68719476736 ?
PR = 154538439 0.002248 83
T T 68719476736 ’
6708473
Pt = —— = —0.000780969,
T T 8589934 592
P = _ 3860673 0.000 112 36,
34359738 368
12211375
Pt = T~ = — 00113727
T 1073741 824 ’
. 56183761
Pt = —0.00327033,
17 179869 184
Pﬂ“”+—4fgg§§§37—omm8w41
TP T 68719476736 ’
108202041
m:ﬁz——%lul—=4mmmwa
34359738 368
7860495
PR = ——————— =0.007 320 66,
1073 741 824
1044016 671
Pt = —0.0151924,
FHE T 68719476736
676957 849
P = ————— =0.00985103,
68719476736
6581795
Pt = —————— =0.00612977,
1073741 824
P = 185522333 0.005399 41
PTTR T 34359738368 0 ’
1 42
K:tj=—~i§§?—jf=—oou0$a
8589934592
267901987
Pt = = _-0.00779697,
e 34359738368
e 309855965 0.004.509
T T 68719476736 ’
2 2461
P = 9688246 = —0.004 32021,

e

T 68719476736

poter
H—+++

poter
o+t —+

proter
+—t++t

proter
ot —++

P
-t

——t
P+——+++ -

——+ttt
P+—++—+

——
P++——++

——ttt
P++—++—

P

HHH—+—

—+—ttt
P+——+++

—
P+—++7+

—+—ttt
P++——++

—t+—t++
P++—++—

—+—+++
P+++—+—

—+—tt
P+—+—++

—t—t+
P+—+++—

——tt
P++—+—+

—++—t+
P+++——+

—+t—t
P+—+—++

—+t—t
P+—+++—

—t—t
P++—+—+

— e+t —
P+——+++

— e —
P+—++7+

5095 899
=27  _0.0000741551,
68719476736
24
=444§§§L7=OOMO%7WL
68719476736
= 443?%119944,:(1000170415
17 179 869 184
192
_ 19268565 ) 100280395
68719476736
= 4312§1§f947::0000517505
34359738 368
4842102
44354449434—=(100140924
34359738368
171
= 4f¥5§l;§§34,=(100256613
34359738 368
_ _07I6545 0165041,
34359738 368
_ 60809571 = 0.000 884 896
T 68719476736 ’
33366621
=T _(.000485548,
68719476736 0.000485548
1
= BT0O8L g 088,
17179 869 184
2557 4
_ 332557469 4 096787,
34359738 368
430452959
=" . _0.00626391,
68719476736
123612511 0.0035976
T 34359738368 ’
131
= 4!3199431517:=(100203905,
34359738368
1 2
= DU 017205,
34359738 368
367905 053
— _ 00 . 2,
68719476736 0-0053537
1
=_u3§¥ii§17==_om43m5,
68719476736
1
_ 363618785 ) 0520135,
68719476736
901 633 567
= " _0.0131205,
68719476736
2462
_ 38524625 ) 0448436,
8589934592
12750 645
= _0.011875,
1073741 824
29410257
= _0.0017119
17 179869 184
1
_ 39985105 00418922
8589934592
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92176287 202 646 807
= o =0.00268268, Pl = o ————— =0.0058978,
34359738368 34359738 368
o 972245985 . 217687057
Pt = ST T 0.014148, P = ———— =0.0126711,
68719476736 17179869 184
211696415 78922695
prot = S 7270 ).0123224, et .~ —0.00459391,
ot 17 179 869 184 e 17179869 184
Pttt 1196499417 — 0.034 8227 A _M = —0.0321528
*T T 34359738368 ’ T 68719476736 ’ ’
Pttt 1108 384987 =0.0322582 P = 530683585 = 0.0308899
T T 34359738368 : T T17179869 184 ’
347202525 268 623 007
Pt = T 0.0202098 P = o e = —0:00390898
TR T 17179869 184 %8. T T 68719476736 20895,
Pt — 46285135 — 0.005 3883 Pttt — 136974 885 = —0.00199325
YT 8589934592 ' T 68719476736 '
19939391 18442085
Pt — 7777 0.0011 s Pttt = = (. 2 ’
e T 17179860 184 01 16063 e T TR 710476736 000208368
Pttt — 1018463205 =0.014 8206 P = _ 1454513249 = —0.021 166
+——— 68719476736 ' ’ o 68719476736 ’ '
277721503 335265249
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1719255909 5350158 879
P = 27 2 0.0500369, P = — e = —0.0778551,
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Pt = 2 T2 0,.0455699, P = o = —0.044 5253,
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Pt = 0.0308145.
TR T 68719476736
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